
I. Sinusoids, Exponentials, and Electrical Circuits

A. Introduction

It is a remarkable fact of nature that almost any homogeneous and stationary physical system
when lightly perturbed will decompose that perturbation as it propagates through the system into
sinusoids that will move at different speeds, while decaying exponentially. Homogeneous and sta-
tionary systems are systems that do not change in space or time. This remarkable fact of nature is
true when you throw a rock in a pond; after an initial splash, sinusoids will propagate outward. It
is true for for pressure waves moving through the earth or through the scaffolding of a building or
a bridge. It is true for sound waves. It is true for the vibrational waves on a violin string. It is true
for radio waves propagating in the earth-ionosphere waveguide and for light waves propagating
through optical fibers. It is true for gravity waves propagating through the interstellar medium. It
is even true for the probability waves that govern the positions of electrons and holes in solids.

It is this fact that makes sinusoids and their properties so important in the study of physical
systems and engineering.

Of course, no real system is exactly homogeneous and stationary. Moreover, we can question
how “lightly” it is necessary to perturb a real system to generate sinusoids. However, these approx-
imations work well enough in real systems that they are the starting point for analyzing a vast array
of systems, including the electrical and photonic systems that are our own interest.

This remarkable fact of nature is closely allied to the mathematical fact that the solution of any
linear ordinary differential equation with constant coefficients can be written as a sum of complex
exponential, perhaps multiplied by polynomials.

The goal of this review is to cover the basic mathematical tools that are needed to analyze linear
circuits and more generally any linear system.

B. Sine and Cosine Functions

Sine functions can be defined geometrically using the unit circle. Given any point (x,y) on the
unit circle, we define the sine function as sin(θ) = y(θ) and the cosine function as cos(θ) = x(θ),
where θ is the angle in radians, as we show in Fig. 1.

In Fig. 2, we show plots of the sine and cosine functions as θ changes between 0 and 6π .

These functions repeat periodically every 2π . Given the definition of the cosine and sine func-
tions, it follows that

cos(−θ) = cos(θ), sin(−θ) =−sin(θ)
cos(θ +π/2) =−sin(θ), sin(θ +π/2) = cos(θ)

(1)

From the definition, it also follows that cos2 θ + sin2
θ = 1.

We can now derive the angle addition and subtraction formulae. We consider two angles α and
β as shown in the first half of Fig. 3. The distance d between the two points (x2,y2) and (x1,y1)
is the same as the distance d between the point (xc,yc), defined by the angle β −α , shown on the
right, and the point (1,0) on the x-axis of the unit circle. We have just rotated the circle by −α .
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We now find

d2 = (x2 − x1)
2 +(y2 − y1)

2 = 2−2cosβ cosα − sinα sinβ

= (xc −1)2 + y2
c = 2−2cos(β −α),

(2)

from which it follows
cos(β −α) = cosβ cosα + sinβ sinα. (3)

Using Eq. (1), we can now find by substitution

cos(β +α) = cosβ cosα − sinβ sinα,

sin(β −α) = sinβ cosα − cosβ sinα,

sin(β +α) = sinβ cosα + cosβ sinα.

(4)

We will also need the relation
lim
θ→0

sinθ

θ
= 1. (5)
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To obtain the relationship, we consider the circular sector subtended by the angle θ that we show
in Fig. 4. The area of the sector is θ/2; the area of the inner triangle is (1/2)sinθ cosθ ; and the
area of the outer triangle is (1/2)(sinθ/cosθ). It follows that

sinθ cosθ < θ < sinθ/cosθ , (6)

and noting that cosθ → 1 when θ → 0, we obtain the final result. This last derivation is our last
geometric derivation. From hereon, we proceed algebraically.

We can now derive the derivative relations from the basic definition of the derivative. We have

d sinθ

dθ
= lim

∆θ→0

1
∆θ

[sin(θ +∆θ/2)− sin(θ −∆θ/2)]

= lim
∆θ→0

2
∆θ

cosθ sin(∆θ/2) = cosθ .

(7)

It follows immediately that d cosθ/dθ = −sinθ . From the fundamental theorem of calculus
(not proved here), the integral is given by the inverse of the derivative. We thus find∫

sinθ dθ =−cosθ +C,
∫

cosθ dθ = sinθ +C, (8)

where C indicates an arbitrary constant that is determined by the integration limits.

C. Complex Numbers and Exponentials

Complex numbers are defined as z = x + iy, where i =
√
−1, while x and y are real numbers.

Complex numbers can be represented in the (x,y) plane—usually referred to as the complex plane
in this context, as we show in Fig. 5.

We see that the complex numbers can also be represented as z= r cosθ + ir sinθ , where r =(x2+
y2)1/2 and θ = tan−1(y/x). This second representation is referred to as the polar representation.
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Because the sine and cosine functions are periodic, this representation is not unique. The number
zn = r cos(θ +2πn)+ ir sin(θ +2πn) is the same when n equals any integer value.

Addition and subtraction of complex numbers are defined as follows

z1 + z2 = (x1 + x2)+ i(y1 + y2), z1 − z2 = (x1 − x2)+ i(y1 − y2). (9)

Multiplication can be defined using the distributive relation

z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2)+ i(x1y2 + x2y1). (10)

To define division, we first define the complex conjugate, z∗ = x− iy. We then find

z1

z2
=

z1z∗2
|z2|2

=
(x1x2 + y1y2)− i(x1y2 − x2y1)

(x2
2 + y2

2)
. (11)

We now define the exponential function, which will see greatly simplifies the discussion of
multiplication, division, and much else.

We let exp(iθ) = cosθ + isin(θ). We see that as θ increases, the values of exp(iθ) trace out the
unit circle in the complex plane. We can show the important relation

exp[i(θ1 +θ2)] = exp(iθ1)exp(iθ2), (12)

which follows from the angle addition and subtraction formulae. We find

exp(iθ1)exp(iθ2) = (cosθ1 + isinθ1)(cosθ2 + isinθ2)

= (cosθ1 cosθ2 − sinθ1 sinθ2)+ i(cosθ1 sinθ2 + sinθ1 cosθ2)

= cos(θ1 +θ2)+ isin(θ1 +θ2) = exp[i(θ1 +θ2)].

(13)

4



x

y

(x, y)
r

θ

Figure I.5

In terms of the complex expontial, we have

z1z2 = r1r2 exp[i(θ1 +θ2)],
z1

z2
=

r1

r2
exp[i(θ1 −θ2)]. (14)

We can now easily define powers and roots. We have

zn = rn exp(inθ), z1/n = r1/n exp[i(1/n)(θ +2πm)], (15)

where m and n are integers. In the complex plane, there are n independent solutions for the n-th
root. So, for example, the number 27 has as its cube roots 3, 3exp(2πi/3), and 3exp(−2πi/3).
Finally, we note the relations

cosθ =
1
2
[exp(iθ)+ exp(−iθ)], sinθ =

1
2i
[exp(iθ)− exp(−iθ)]. (16)

Another important property of the complex exponential is its derivative. Using the derivative
relations for the cosine and sine, we find

d exp(iθ)
dθ

= iexp(iθ), (17)

so that the derivative of the complex exponential just equals itself multiplied by the factor i.
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We now want to extend the definition of the exponential function so that its arguments can be
complex. To do that, it is useful to introduce the Taylor expansions of the exponential function at
x = 0. We recall the Taylor expansion formula (not proved here) is given by

f (x) =
∞

∑
n=0

f (n)(0)
xn

n!
, (18)

where f (n) = d f n(x)/dx|0 is the n-th derivative of the function evaluated at zero. We now find that

exp(iθ) =
∞

∑
n=0

(iθ)n

n!
. (19)

For an arbitrary complex number z, we now let

exp(z) =
∞

∑
n=0

zn

n!
. (20)

This sum converges for any z, so that this definition of the exponential is well-defined for any z.
We now find

d expz
dz

= expz (21)

and
exp(z1 + z2) = exp(z1)exp(z2). (22)

It follows that
exp(nz) = [expz]n = [exp(x)]n exp(iny), (23)

where n is an integer. We see that this corresponds to multiplying the magnitude by a constant
multiple for each increase of n by 1 and rotating the phase angle by a constant amount. For an
oscillator circuit, we will see that this relationship translates into a decrease by a fixed factor over
every interval of time and a rotation of the output phase by a fixed amount.

D. Ordinary Differential Equations and Phasors

Any linear system without an external energy source has natural frequencies at which it wants to
oscillate, along with exponential decay. In particular, any circuit that consists of a combination of
resistors, capacitors, and inductors can be described by an n-th order ordinary differential equation
with constant coefficients. The homogeneous version of this equation, which is what determines
the natural frequencies, may be written

0 =
n

∑
m=0

Am
dmu(t)

dtm , (24)

where Cn can be set equal to 1. If it is not 1 initially, we divide through by it. In a circuit, the
quantity u is either the voltage or the current at a load. To find the natural frequencies, we substitute
u(t) = exp(γt) into Eq. (23), which becomes

0 =
n

∑
m=0

Amγ
n. (25)
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Eq. (24) is an n-th order polynomial, which has n roots γ j, in terms of which Eq. (24) can be written
as

0 =
n

∏
j=1

(γ − γ j). (26)

It is evident that given Eq. (25), we can obtain the Am. The converse is less obvious and referred
to as the fundamental theorem of algebra. Obtaining the γ j when n is large is in fact a difficult
computational problem. Once the γ j have been found, we can write the general solution to Eq. (23)
as

u(t) =
n

∑
j=1

C j exp(γ jt), (28)

where the values of the C j are determined by the initial conditions, which are the values of the
dmu/dtm, m = 0,1, . . . ,n− 1 at t = 0. An important caveat is that if two or more of the values of
the γ j coincide, it is necessary to some of the coefficients by polynomials. We will not be concerned
with this special case here.

In circuits with resistors, inductors, and capacitors, we can say a bit more about the γ j. In this
case, the Am will all be real, and it follows that the γ j are purely real or come in complex conjugate
pairs. Hence, we can write γ j = −α j + iω j. Moreover, the presence of resistors implies that the
circuit will lose energy; so, we must have α j > 0. Additionally, since u(t) must be real in this
case, the coefficients C j are constrained. If we let j = 1, . . . , p refer to γ j = −α j that are purely
real, then the corresponding C j must be real. If we let j = p+1, . . . ,n refer to pairs of γ j such that
γ j =−α j + iω j, γ j+1 =−α j − iω j, then we must have C j+1 =C∗

j , and Eq. (26) becomes

u(t) =
p

∑
j=1

C j exp(−α jt)+
(n−p)/2

∑
l=1

2|Cp+2l−1|cos(ωt +θp+2l−1)exp(−αp+2l−1t), (27)

where, writing Cq = |Cq|exp(iθq), where p+2l −1, we have substituted

Cq exp(γqt)+Cq+1 exp(γq+1t)
= [Cq exp(iωqt)+Cq+1 exp(−iωq+1t)]exp(−αqt)
= |Cq|[exp(iωqt + iθq)+ exp(−iωqt − iθq)]exp(−αqt)
= 2|Cq|cos(ωqt +θq)exp(−αqt).

(29)

The key takeaway from all this mathematics is that once a circuit is started up—and we will talk
shortly about how that can be done—any load will oscillate sinusoidally with some combination of
frequencies (including zero), while the voltage and/or current at the load slowly decays. As noted
in the introduction, the same holds true for any linear system—not just circuits. So, these ideas
are very important. Good oscillator circuits of the sort in which we are interested have very low
attenuation, so that α j ≪ ω j

We now consider the RLC circuit that we show in Fig. 6.
Before t = 0, switch S1 is open and switch S2. At that time, we have no current flow so that

V1 = V2 = V0. When switch S2 is opened and switch S1 is closed, the charge on the capacitor
begins to discharge through the inductor and the resistor. The circuit evolution is described by the
following equations

L
dI(t)

dt
+RI(t)−V (t) = 0,

dV (t)
dt

+
I(t)
C

= 0. (30)
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Figure I.6

These equations are in the form of two coupled first-order equations, rather than a single second-
order. We can turn Eq. (29) into a second-order equation by taking the derivative of the second
equation derivative and then using both equations to eliminate I(t) and dI(t)/dt. If we do that, we
find

d2V (t)
dt2 +

R
L

dV (t)
dt

+
1

LC
V (t) = 0. (31)

Substituting exp(γt) into this equation to find the natural frequencies, we find

γ
2 +

R
L

γ +
1

LC
= 0, (32)

which implies that

γ =− R
2L

±
(

R2

4L2 −
1

LC

)1/2

. (33)

In the case of greatest interest to us, we have (1/LC)1/2 ≫ (R/2L2), and our two natural frequen-
cies are complex congugates with γ1 =−α + iω and γ2 =−α − iω with

α =
R
2L

, ω =

(
1

LC
− R2

4L2

)1/2

. (34)

The general solution can be written as

V (t) = Ṽ exp(−αt + iωt)+Ṽ ∗ exp(−αt − iωt), (35)
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where Ṽ must be determined from the initial conditions. We also have

dV (t)
dt

= (−α + iω)Ṽ exp(−αt + iωt)+(−α − iω)Ṽ ∗ exp(−αt − iωt). (36)

The initial conditions are V (t = 0) =V0 and dV (t)/dt|0 = 0. The derivative must be zero because
the inductor forces the initial current flow to equal zero. We now find

Ṽ +Ṽ ∗ =V0, (−α + iω)Ṽ +(−α − iω)Ṽ ∗ = 0. (37)

We then obtain

Ṽ =
1
2

(
1− iα

ω

)
V0.

Writing the solution as a cosine function, we then find

V (t) =V0
cos(ωt +θ)

cosθ
exp(−αt), (38)

where θ = tan−1(α/ω). The current is then given by

I(t) = ωCV0
sin(ωt)
cosθ

exp(−αt). (39)

We see that the current and the voltage are almost, but not exactly a phase π/2 apart, which is
typical of a weakly damped oscillator.

In this case, we supposed that the oscillator was launched with a fixed initial condition and then
allowed to relax at its natural frequency. The more general case is that we drive the circuit with an
input signal. In the most general case, Eq. (23) becomes

n

∑
m=0

Am
dmu(t)

dtm = v(t), (40)

where v(t) is the driving signal. When the driving signal is periodic, write the driving signal as

v(t) =
v0

2
+

∞

∑
l=1

vl cos(ilω0t +θl), (41)

where if T is the period, then ω0 = 2π/T is referred to as the fundamental angular frequency. We
can rewrite this sum as

v(t) =
1
2 ∑

l=−∞

ṽl exp(ilω0t), (42)

where ṽ0 = v0 is a constant contribution. The quantities ṽl are referred to as phasors in electrical
circuit theory. They differ from the usual Fourier components by a factor two. We will defer the
question of to calculate ṽl , given v(t) until later.

The key point is that in any linear system, the response of the system to a sinusoidal driver is
a sinusoid with the same frequency. Hence, each of the terms in the driving signal can be treated
independently, and the can all be summed at the end.

In the case of Eq. (39), we see that if we write

u(t) =
1
2

∞

∑
l=−∞

ũexp(iωlt), (43)
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then it follows that

ũl =

[
n

∑
m=0

(ilω0)
m

]−1

ṽl (44)

solves this equation. It is referred to as a particular solution because we can add any solution of
the homogeneous equation, Eq. (23), to this particular solution, and we still have a solution to the
inhomogeneous equation, Eq. (39). However, since the solutions to Eq. (23) all decay, the particular
solution will ultimately become all that is left. Hence, it is often referred to as the steady-state
solution, while the solutions that decay are referred to as transients. The transient contributions to
the complete solution are determined by the initial conditions.

We now consider the driven RLC circuit that we show in Fig. 7.

Figure I.7

This circuit is the first stage in a ladder circuit and appears in the theory of transmission lines.
We will suppose that we have a single input frequency, so that the driving voltage is given by

Vin(t) =Vi cos(ω0t +θi) = ℜ [ṽi exp(iω0t)] , (45)

where ṽi = Vi exp(iθi). We wish to calculate Vout. We see that this circuit functions as a voltage
divider. We have the equation

L
dI
dt

+RI =Vin(t)−Vout,

dVout(t)
dt

=
I
C
.

(46)

We can derive a second-order ordinary differential equation for Vout by eliminating I, and we
find

d2Vout

dt
+

R
L

dVout

dt
+

1
LC

Vout =
1

LC
Vin. (47)

We now write
Vout =Vo cos(ω0t +θo) = ℜ [ṽo exp(iω0t)] , (48)
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where ṽo =Vo exp(iθo). In the phasor domain, Eq. (45) becomes(
−ω

2
0 +

R
L

iω0 +
1

LC

)
ṽo =

1
LC

ṽi. (49)

It is convenient to write 1/LC = ω2
r and α = R/2L, where we note that ωr is close to the angular

oscillation frequency of the circuit. We then have

ṽo =
ω2

r [(ω
2
r −ω2

0 )−2iαω0]

(ω2
r −ω2

0 )
2 +4α2ω2

0
ṽi. (50)

Returning to the time domain, we find

Vo =
ω2

r

[(ω2
r −ω2

0 )
2 +4α2ω2

r ]
1/2Vi, θo = θi − tan−1[2αω0/(ω

2
r −ω

2
0 )]. (51)

A point to note is that when α ≪ ωr, as is the case in a good ocillator, and the driving frequency
ω0 is close to the driving frequency, then Vout will be much larger in magnituce than Vin and almost
exactly π/2 out of phase. Most of the energy at steady state is sloshing back and forth between the
capacitor and the inductor, with a small amount added in on each cycle to compensate for the loss
in the resistor.

An example of a transient solution can be found in the next section on oscillators.

Exercises
These exercises combine investigative exercises that require you to do some on-line research
(I), mathematical exercises to fill in missing steps or provide additional examples (M), and
computational exercises to illustrate functions in the complex domain (C).

1. (I) We made use of Taylor expansions in our derivations. How do you prove that and what
the conditions for convergence of a Taylor expansion?

2. (I) We made use of the fundamental theorem of calculus to find the integrals of the cosine
and sine functions. What is this theorem and how do you prove it?

3. (M) Show that the Taylor expansion for exp(z) converges for any complex z. Infer that the
same is true for cos(z) and sin(z).

4. (M) We defined the exponential function using the definitions of the sine and cosine func-
tions. A more usual way to define the exponential function is as

exp(x) = lim
n→∞

(
1− x

n

)n
.

(a) Using this definition, derive the expressions for the Taylor expansion of exp(x) and
d exp(x)/dx. Show that exp(x+ y) = exp(x)exp(y).

(b) Use the complex exponential to define the cosine and sine functions, i.e., exp(iθ) =
cosθ + isinθ . Derive the usual expressions for the Taylor expansions and derivatives.
Derive the angle additional formulae. Show that they are periodic with a period equal
to 2π .
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5. (M) Another way to define the exponential is as a function that satisfies the relation f (x+
y) = f (x) f (y), along with the condition that lim∆x→0 f (∆x) = 1+∆x. Show that you can
derive the usual properties of the exponential function from this definition.

6. (M,C) The complex number z has n roots, z1/n. Where are those roots located on the complex
plane. If we z = 3+3i, plot the roots for n = 9.

7. (C) The close connection between the exponential function expx and the sinusoidal functions
cosx and sinx may appear a bit surprising at first since they look very different on the real
axis. To gain some insight into the connection, we may plot their contours in the complex
plane.

(a) Use Matlab to plot contours of the real and imaginary parts of cosz and sinz where
x = ℜ(z) varies between −2π and 2π , while y = ℑ(z) varies between −3 and 3.

(b) Use Matlab to plot contours of the real and imaginary parts of exp(z), where x = ℜ(z)
varies between −3 and 3, while ℑ(z) varies between −2π and 2π .

8. (C) Same as exercise 6 except for plotting the complex amplitude and phase of each function.
[Hint: Watch out for the 2π jumps!]

9. (I) Section D reviews the portion of the theory of ordinary differential equations that
is needed to understand oscillators (both mechanical and electrical). The textbook for
MATH225 gives a far more detailed description of the applicable theory of ordinary equa-
tions. For example, in spring 2020, the textbook was Introduction to Differential Equations
by S. Farlow; see chapter 3.

(a) Discuss how our examples fall within the general framework of the theory of second-
order homogeneous and non-homogeneous ordinary differential equations that is dis-
cussed in a standard undergraduate textbook on the theory of ordinary differential equa-
tions (your choice).

(b) Discuss how the ideas that apply to second-order systems are extended to higher-order
systems.

10. (M,I) We formulated the theory of linear ordinary differential equations using a single higher-
order equation. It is usually more useful to formulate the theory as a coupled set of first-order
equations, so that

du1

dt
= a11u1 +a12u2 + · · ·+a1nun,

du2

dt
= a21u1 +a22u2 + · · ·+a2nun,

...
dun

dt
= an1u1 +an2u2 + · · ·+annun,

(E9.1)

for a homogeneous (non-driven) system. This equation can be written in matrix form as

du
dt

+Au = 0, (E9.2)
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where u and A, where u is an n-dimensional column vector and A an n× n-dimensional
matrix.

(a) (M) Show that Eq. (23) can be written in this form. [Hint: the derivatives can be used
to define the un.]

(b) (I) When searching for the natural frequencies, we set u = ūexp(γ jt), where u is a
constant column vector. Equation E9.2 now becomes

(A− γ I)ū = 0, (E9.2)

where I is the n× n identity matrix, which is the matrix that has 1 in all the diagonal
elements and zero everywhere else. The condition for this equation to have solutions
is for the determinant to equal zero. Give the definition of the determinant and show it
corresponds to a polynomial of order n with real coefficients. The γ j are referred to as
eigenvalues or characteristic values of the system.

11. (M) Fill in the algebraic details between Eq. (29) and Eq. (38).

12. (M) Fill in the algebraic details between Eq. (45) and Eq. (50).

13. (M) The circuit that we considered in Fig. 6 and is expressed in Eq. (29) can be studied
most efficiently by expressing it as two coupled first-order equations. Introducing the phasor
domain representations for both V (t) and I(t), V (t) = Ṽ exp(γt) and I(t) = Ĩ exp(γt), find
the two coupled algebraic equations that govern Ṽ and Ĩ. Show that the values for γ are the
same as we found before.

14. (M) The driven system of equations that we considered in Fig. 7 and is expressed in Eq. (45)
can also be studied most efficiently by expressing it as two first-order equations and intro-
ducing the phasor domain representations for these equations. Use this representation to find
the stead-state solutions.

15. (C) Typical values for R, L, and C in an oscillator circuit would be R = 1 Ω, L = 100 nH,
and C = 10 pF. Assuming that the initial value of the voltage in the circuit is 1 V, plot I(t)
and V (t).

16. (M) If the circuit that is represented in Fig. 7 and in Eq. (45) is turned on at t = 0, there will
be a transient solution before the circuit reaches its steady state.

(a) Show that the initial condition is

Vout(t = 0) = 0,
dVout

dt

∣∣∣∣
t=0

= 0.

(b) Find the transient solution and the total solution.
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